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Normal-ordered products with corresponding contractions for Grassmann 
operators that appear in supersymmetry are defined. It is shown, using the case 
of chiral superfields, that these normal-ordered products are useful in practical 
manipulations. As a demonstration, they are used to simplify evaluation of 
superfield propagators, functional differentiations, and integrations by parts. 

1. INTRODUCTION 

In supersymmetry (Wess and Zumino, 1974a, b; Volkov and Akulov, 
1972) superfields which are functions of superspace coordinates z -- (x, 0, t~) 
always have finite series expansions in Grassmann variables 0 and 0 (Salam 
and Strathdee, 1974a, b; Wess and Bagger, 1983). [In notations, metric, and 
various definitions, we closely follow Wess and Bagger (1983).] Hence, for 
example, when differential operators act on some superfield quantity, it 
would be desirable to have differentiations with respect to 0 and 0 done 
separately from differentiations with respect to x, which in turn would 
render the whole thing properly expressed as a power series in 0 and 
This task can be accomplished naturally with the help of normal-ordered 
products containing "elementary" Grassmann operators, where the elemen- 
tary Grassmann operators are defined as 0~ and 0~, and supersymmetry 
differential operators containing o/a0~ and O/O0~ (a, d = 1, 2): 

Q~ = o/ao ~ + 0-.% o~Pm 

O~ = - 0 / 0 0  a - O~ o'~%Pm 
(1) 

D,~ = 0 /00  ~ m -~ - o - ~ . 0  P,. 

O~ = - O / O 0  ~ + O"o'~,"~P,. 
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Here P,,  = - i  O / O x " .  While Q and (~ are differential operators from ( N  = 1) 
superalgebra and are used to deduce the transformation laws for superfields, 
D and 19 are used to formulate superfield equations of motion and to 
impose the convariant constraints on superfields. 

According to our definition of elementary Grassmann operators, they 
are either covariant [as in (1)] or eontravariant vectors. The relationships 
between them are as follows: 

a ~ = e~t3at3, A~ a = ea~ /~  (2) 

Here A~ (Aa) denotes 0~, Q~, and D~ (0n, Q~, and/Sa) ,  while eab= -e ,b  
(a = a, ~; b = fl,/~) is the antisymmetric Levi-Civita symbol, with eabe be= 
6~. Scalar products A B  = A'~B,~ = - A , ~ B  ~ and A/~ = ,4~/~ = - / ~ / ~  satisfy 

A B  = B A +  e~t3{A~,  B~}; A B  = B A +  e~{.,~ t~,/~} (3) 

Next we list the values for various anticommutators among Grassmann 
operators that will be needed later. (For simplicity, from now on, an 
elementary Grassmann operator is referred to simply as a Grassmann 
operator.) They are: 

{Q~, 0~} = {D~, 0t~ } = et~ 
(4) 

{Q~, 0A = {D~, 0 A = ~ 

{ (~,, Q~} = -{D~,,/5~} = - 2 o - ~  P= (5) 

{0~, 0A ={0~, gA = {#~, #A=0 

{Q~, g~} = {D~, 0t~} = {Q~, 0t3} = {/ga, 0t~} = 0 (6a) 

{D~, Q~} -- {De, (~} = {fSa, Qt~} = {Da, Qt~} = 0 

{Q~, 0~}-- {D~, 0~} = {Q' ,  0~} 

. . . . .  {D~, Q~} 0 (6b) {D ' ,  0t~ } = = {D~, Q~ } -  - '  = 
r m o t  ! t _ _  where in (6b), for example, D ~ = O / O 0 " - o ' ~ , ~ O  P,, , ,  P m - - i O / O x  'm. 

[Unprimed and primed operators are to be associated with z = (x, 0, ~7) and 
z '=  (x', 0', tT'), respectively.] Clearly, any other anticommutator, such as 
{Q~, 0t~}, can be easily obtained with the help of (2). Anticommutators 
(4)-(6) will be the backbone of the contractions between various Grassmann 
operators that are necessary to reduce products of ordinary or normal- 
ordered products into the superposition of normal-ordered products of 
Grassmann operators. 

In Section 2 we give the definitions of normal-ordered products and 
contractions of Grassmann operators. Some simple applications of these 
normal-ordered products for chiral superfields are given in Section 3. Section 
4 is devoted to a discussion of the results and the conclusion. 
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2. N O R M A L - O R D E R E D  P R O D U C T S  A N D  C O N T R A C T I O N S  OF 
G R A S S M A N N  O P E R A T O R S  

The definition of the normal-ordered product of  Grassmann operators 
is very simple. Let us take n Grassmann operators (0, ~ Q, ( ) , / 9 , / 5 ,  0', 
0 ' , . . . ,  0" , . . . ) ,  and for simplicity denote them as G(1), G ( 2 ) , . . . ,  G(n). 
Then the symbol : G ( 1 ) G ( 2 ) . . .  G(n):  defines their normal product; 
i.e., the product in which by definition Grassmann operators 
G(1), G ( 2 ) , . . . ,  G(n) behave as if they were ordinary anticommuting 
Grassmann variables. 

As far as one can tell, the definition of the normal-ordered product 
here is very similar to the definition of the normal-ordered product in 
quantum field theory involving fermion creation and annihilation operators. 
In fact, the usual rules for normal-ordered products from quantum field 
theory apply here also. Specifically, the distribution law and the permutation 
rule (factors inside the normal-ordered product may be permutted as if all 
the anticommutators were equal to zero) are valid here also. However, the 
difference comes because, unlike for quantum fields, here the index of  
Grassmann operator G~ can assume only two values: a = 1, 2 (a = a, 6). 
The permutation rule then allows Grassmann operator G to appear no more 
than twice in the normal-ordered product, since G,~GbGc =0  (as a con- 
sequence of {G~, Gb} =0).  

Next we address the question of contractions between various Grass- 
mann operators. Now the difference with contractions between quantum 
Fermi fields will be encountered. Namely, while in quantum field theory 
the anticommutators between annihilation (or creation) fermion operators 
are zero, here, as seen from (5), the anticommutators between the differential 
Grassmann operators are not always zero; this will cause the existence of  
contractions between these differential Grassmann operators, complicating 
the situation somewhat. 

In general, two Grassmann operators G(1) and G(2) can have two 
contractions G(1)G(2)  and ,G(2)G(1) defined as 

G(1)G(2)  = :G(1)G(2):  + 9(1)9(2) (7a) 

G(2)G(1)  = :G(2)G(1):  + q(2)q(1) (7b) 

Since by permutation rule :{G(1), G(2)}: =0,  we have that G(1)G(2)  and 
G(2)G(1)  must satisfy the constraint 

G(1)G(2)  + G, (2)G(1) = {G(1), G(2)} (7c) 

For our Grassmann operators all the contractions are easily calculable, and, 
consistent with (4)-(6) and (7c), they fall into the following three categories: 

I. G(1) ,G(Z) = 0, G(2)G(1)  = {G(1), G(2)} (8) 
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II. ,G(1)G, (2) = G(2)G, (1)=�89 G(2)} (9) 

III .  G(1)G(2)  = G(2)G(1)  = {G(1), G(2)} = 0 (10) 

As we see, under the contraction sign I1 ,  the Grassmann operators may 
be interchanged (with a positive siga) in categories I I  and I I I  of  contractions, 
while in category I they cannot be interchanged at all. Next we list the 
specific contractions. From category I they are 

o~=._Qt3 = O~_jDt3 = 0, Q=_%0t3 = D~013 = et~ 
(11) 

The contractions of category II are between few differential operators that 
carry undotted and dotted indices, respectively: 

o ~  ~= & 9 o  = - o ~ 0  ~ = -  0~oo = ~o~m (12) 

Contractions (12) are of  category I I  because, for example, we have 

{O/ Off c', D,~} = {0/ 00 ~, Da} = o 'L  P,. (13) 

The contractions of  category III ,  which are numerically zero regardless of  
the order of  contracting Grassmann operators, are the most numerous, since 
they appear  whenever the ant icommutator  between two Grassmann 
operators vanishes [compare with (10)]. Consequently, all contractions 
between Grassmann operators appearing in vanishing anticommutators (6a) 
and (6b) are zero and are of  category III :  

~ .  . .=o~._~o~--0~,  . . - D '  �9 =" ' ="  - , ~ Q ~ = ~  (14) 

Let us also mention that contractions between contravariant and 
covariant vector-Grassmann operators are obtained with the help of (2), as 
in the example 

o, o0~ = : ~ 9 ~ c , ~  = : " o ' ; ~ P r .  

The practical significance of all of these contractions is that they can 
be used in the normal-ordered product expansions. For example, an ordinary 
product of  Grassmann operators can be written as a superposition of 
normal-ordered products according to a familiar rule: 

. . . . . . . . . . .  : (15) 
J 

where the summation over j also means summation over indices a and d. 
Similar rules can be devised for reducing a product of normal-ordered 
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products into a superposition of normal-ordered products, which is illus- 
trated in the simple example 

: [ ' ' r  G ( i ) ' "  " ] : : [ ' ' "  G ( j ) ' "  "]: 

= " ' k 0 

where the prime on the summation sign indicates that O/OG(k) acts on the 
Grassmann operators in the second bracket only. 

3. S O M E  S I M P L E  A P P L I C A T I O N S  

As in our applications of the normal-ordered products of Grassmann 
operators, we shall deal exclusively with chiral superfields; here, following 
Salam and Strathdee (1974a, b), Wess and Bagger (1983), and Mohapatra 
(1986), we briefly review their properties. The chiral superfield d9 is required 
to satisfy the supersymmetric invaraint constraint: 

/ 5 ~  = 0  (17a) 

S ince /5~y"  = 0 and/5~0 = 0, where y "  = x m + iocrm~ we see that qb can be 
expressed alternatively in (y, 0) and (x, 0, O) representations with the follow- 
ing components: 

= A(y)  + v~O~O(y) + 02F(y) 

exp(-OcrmffPm)[ A(x)  +x/20~p(x) + 02F(x) ] 

= a ( x )  - Oo"oPma(x) +�88 ~ []A(x)  

+,/20~p(x) + (1/X/2) O2pm~b(X)O''O + 02F(x) (17b) 

Here A is a scalar, ~O a spinor, and F an auxiliary field of dimension 2. 
The antichiral superfield is simply qb +, and, because D~y +m = 0 and D~t7 = 0 
(y+" = x m - iOo"O), it satisfies 

D~qb + = 0 (18a) 

Its power series expansion is obtained from (17b) by conjugation: 

dp + = a *(y +) + x/-2 ff~(y +) + ~ F*(y +) 

=_ exp( Ocr"ffpm)[a*(x ) +v/2Otp(x) + g2F*(x)] 

= a*(x)  + Otr"OPma*(x ) +�88 z DA*(x)  

+x/20~p(x) - (1/x/2)ffZOtr"OP,,4s(x)+ 02F*(x) (18b) 

Because of the absence of differential Grassmann operators, both 
expressions are trival cases of expansions in terms of the normal-ordered 
Grassmann operators 0 and 0. 
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Let us now expand in terms of the normal-ordered Grassmann operators 
expressions containing 0 and 0 and differential operators D and /3. We 
start with D 2 6(0-0') and /32 6(0-0'), where 6(0)= 02 and 6(O)= ~2, 
and, for later reference, 6 (z) = 6 (x) 6 (0) 6 (O). With straightforward applica- 
tions of equation (15) and appropriate contractions, one obtains 

-�88 - 0') = : e x p [ - D ( 0  - 0')]: (19a) 

-�88 = : e x p [ - D ( 0 -  0')]: (19b) 

We immediately demonstrate the usefulness of relations (19) by noticing 
that, consistent with (17a), we have the following functional derivative for 
the chiral fields (Wess and Bagger, 1983): 

609(z')/ 6~(z) = 3(0 - O')6(y- y') (20a) 

Equation (20a) does not contain 8 ( z - z ' )  explicitly. However, expanding 
6(y-y') and utilizing (19b), we obtain 

6(0 - 0') 6 ( y - y ' )  = 8(0 - 0') e x p [ -  &rm(0 - 0')P,,] 6 ( x - x ' )  

= 6(0 - 0') : e x p [ - D ( 0  - 0')]: 8 ( x - x ' )  

= -�88 (20b) 

which now contains 8(z-z ')  explicitly. As we see, the notion of normal- 
ordered Grassmann operators allows us to derive relation (20b) directly 
rather than to find it from the variation of  �9 under full superspace integra- 
tions (Wess and Bagger, 1983). 

Next, because of (17), we have, for example, that : e x p [ - D ( 0 - 0 ' ) ] :  
qb(z) = ~b(z). Consequently, we have also 

-�88 - O')rb+(z) = ~b+(z) (21a) 

-�88 - O')~(z) = q~(z) (21b) 

Relations (21) are very useful when carrying out integrations by parts. 
Because the projection operator on chiral fields is (/32D2/16[3) (Wess and 
Bagger, 1983), we use (21) in the two examples 

I 6(O)~2(z) d8z= f 6(~)4p(z) /32D2~(z) 

f D 2 1 
(22) ~(z) = -  q,(z) 

4 J t_3 

I S(O)dp(z) O2~p(z) dSz=-4 I *2(z) dSz (23) 

where d8 z = d4 x d2 0 d2 ff ~ d4 x d4 0. Case (23) is particularly noteworthy, 
since, in view of (17a), one would naively expect (23) to vanish. 
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Let us now give an example where only the contractions between 
differential Grassmann operators occur. The example used is to rewrite the 
projection operator for chiral fields in a normal-ordered form as follows: 

1 /52D 2 1 [D 2,D 2] 

16 [] 16 [] 

DO-mDPm~ : Do-m/5: P"  (24/ 
= 1 ~-~ ] qb = 2P 2 

Now qb(x, 0, 0), according to (17b), when expanded in terms of 0 and 0 is 
the generator of supermultiplet (independent) components (Salam and 
Strathdee, 1974a, b). Therefore, the normal-ordered operator in (24) cannot 
mix the different components, so we must have 

(2-~ :DO-~I~: P~ - I ) [ A(x) -  OO-mOP,,A(x)-I O202p2A(x) ] =O 

(1 )[ ] 
~ :Do-m/5: Pm - 1 ,/200(x) + 02pm4,o-~O = 0 (25) 

:Do" D: Pro- 1 0 2 F ( x )  = 0 

One verifies relations (25) with normal-ordered product expansions accord- 
ing to (16). 

We list some other illustrative cases of results of normal-ordered prod- 
ucts of Grassmann operators: 

:exp(aD0):  : exp( -D0) :  = : exp( -D0) :  (26a) 

:exp(/)0):  :exp(/)0): = :exp(3/50): (26b) 

: exp( -D0) :  6(0) = 0 (26c) 

6(0) : exp( -D0) :  = 6(0) (26d) 

where c~ is an arbitrary constant. 
When evaluating various chiral free-field propagators, in addition to 

relations (19), one might also find the following relations very useful: 

E)2D26( O - 0')6(0 - 0') 
P =16:exp{-[D(O-O')+D(O-O')+(O-O')o''(O-O)P,.]}. (27a) 

D2/526(0 - 0')6(0 - 0') 

=16:exp{-[D(O-O')+D(O-O')-(O-O')o-'(O-O')Pm]}: (27b) 
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whose evaluations involve contractions between D and 0 and between E3 
and 0 (the first two terms in the square brackets), as well as between D 
and s (the third term in the square brackets), respectively. In propagator 
evaluations, relations (19) and (27) act on 6 ( x - x ' ) ;  now one should take 
into account that within the normal-ordered product, differential operators 
D~ znd/9~ can be replaced with -~(o"f f )Pm and (Oo' ' ) ,~P, , , ,  respectively. 
So, for example, from (19a) we obtain 

D 2 6 ( 0  - O ' ) 6 ( x  - x ' )  = - 4  e x p [ -  i ( 0  - O')o'mOOm]6(X -- X')  

which is now the same as in Wess and Bagger (1983). 
In general and when deriving Feynman rules for supergraphs, integra- 

tions by parts are very important. In this connection one would like to know 
how, in general, a product of Grassmann operators associated with z = 
(x, 0, O) can be transformed into a product associated with z '=  (x', 0', ~7'), 
when acting on 6 ( z - z ' ) .  In simpler cases one is not surprised to find that 

D ~ 6 ( z  - z ' )  = - D "  6 ( z  - z ' )  (28a) 

D a  6 ( z -  z ' )  = - D "  6 ( z -  z ' )  (28b) 

D 2 6 ( z  - z ' )  = D ' 2 6 ( z  - z ' )  (28c) 

t326(z-  z') : s3'26(z- z') (28d) 

These relations can be verified with normal-order product expansions, as 
in the example 

D 2  6(  z -  z ') = - 4  :exp[(0 - O')o-mffpm]: 6 ( i f -  f f ' ) 6 ( x  -- X')  

= --4 : e x p [ - D ' ( 0 ' -  0)]: 6(0 - O ' ) 6 ( x  - x ' )  

= D ' 2 6 ( z  - z ' )  

However, using normal-order expressions (27), one derives explicitly that 

D 2 D Z 6 ( z  - z ' )  = D ' 2 D ' 2 6 ( z -  z ' )  (29a) 

1 5 2 D 2 6 ( z  - z ' )  = D ' 2 D ' 2 6 ( z -  z ' )  (29b) 

i.e., o Z / ) 2 6 ( z -  z ' ) ~  O'2/~ '26(z-z ' ) ,  etc. Relations (28c), (28d), and (29) 
can also be derived by utilizing the fact that contractions between unprimed 
and primed Grassmann operators (associated with z and z', respectively) 
are always zero [see relation (14)]. Then, for example, relation (29a) can 
be derived simply as 

(29a) = - D 2  ff) c<ffI'c' 6 ( z - z ' )  = - DZ D"~ ff)~ 6 ( z - z ' )  

= :D2/9'2: 6(z - z') =/5'2DZ6(z - z') =/5 '2D'26(z - z') 
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where in the last step we used (28c). With reasoning similar to this, we see 
that when acting on 3 ( z -  z') the order of  Grassmann differential operators 
is reversed when the differentiation is switched from z to z'. However, the 
order at which these differential operators act on some function F(z') is 
restored after the integration by parts is carried out, which we illustrate in 
the simple example 

f dSz G ( z ) ~ 2 D 2 6 ( z - z ' ) F ( z  ') 

= ~ dSz ' G(z)[D'21D'26(z - z')]F(z') 

= f dSz ' G ( z ) 6 ( z -  z')19'2D'Z6(z- z') 
3 

4. D I S C U S S I O N  AND C O N C L U S I O N  

As we see, the normal-ordered product of  O's and ff's is simply their 
ordinary product. The normal-ordered product  of  O's, O's, and the anticom- 
muting Grassmann differentical operators can again be expressed as an 
ordinary product in which all the differential operators stand to the right 
of  O's and 0's. However, the normal-ordered product involving O's, 0's, 
and nonanticommuting Grassmann differential operators cannot generally 
be expressed in terms of  ordinary products. This peculiarity, of  course, 
arises because nonanticommuting Grassmann differential operators have 
contractions between them. From the practial point of  view, however, this 
is no handicap, since in practical applications all these normal products 
act on some quantity that is only a function of x; now, under a normal- 
ordered product  differential operators D~ and /3~ can be replaced with 
-~(o-mO)P,, and (O0"m)~Pm, respectively. 

In conclusion, we can say that the concept of  the normal-ordered 
Grassmann operators not only has some new elements not found in normal- 
ordered quantum fields in field theory, but also can be very useful in practical 
evaluations in supersymmetry. 
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